dQUOB: Managing Large Data Flows using Dynamic Embedded Queries
نویسندگان
چکیده
The dQUOB system satis es client need for speci c information from high-volume data streams. The data streams we speak of are the ow of data existing during large-scale visualizations, video streaming to large numbers of distributed users, and high volume business transactions. We introduces the notion of conceptualizing a data stream as a set of relational database tables so that a scientist can request information with an SQL-like query. Transformation or computation that often needs to be performed on the data en-route can be conceptualized as computation performed on consecutive views of the data, with computation associated with each view. The dQUOB system moves the query code into the data stream as a quoblet; as compiled code. The relational database data model has the significant advantage of presenting opportunities for e cient reoptimizations of queries and sets of queries. Using examples from global atmospheric modeling, we illustrate the usefulness of the dQUOB system. We carry the examples through the experiments to establish the viability of the approach for high performance computing with a baseline benchmark. We de ne a cost-metric of end-to-end latency that can be used to determine realistic cases where optimization should be applied. Finally, we show that end-to-end latency can be controlled through a probability assigned to a query that a query will evaluate to true.
منابع مشابه
Dynamic Querying of Streaming Data with the dQUOB System
Data streaming has established itself as a viable communication abstraction in data-intensive parallel and distributed computations, occurring in applications such as scientific visualization, performance monitoring, and large-scale data transfer. A known problem in large-scale event communication is tailoring the data received at the consumer. It is the general problem of extracting data of in...
متن کاملRun-time Detection in Parallel and Distributed Systems: Application to Safety-Critical Systems
There is growing interest in run-time detection as parallel and distributed systems grow larger and more complex. The work targets run-time analysis of complex, interactive scientific applications for purposes of attaining scalability improvements with respect to the amount and complexity of the data transmitted, transformed, and shared among different application components. Such improvements ...
متن کاملارائه روشی پویا جهت پاسخ به پرسوجوهای پیوسته تجمّعی اقتضایی
Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000